
Concurrency 
Patterns in Go
arne.claus@trivago.com  
@arnecls



Concurrency is about design.



Design your program as a collection of independent processes 

Design these processes to eventually run in parallel 

Design your code so that the outcome is always the same



Concurrency in detail
• group code (and data) by identifying independent tasks 

• no race conditions 

• no deadlocks 

• more workers = faster execution



Communicating Sequential Processes (CSP)

• Tony Hoare, 1978 

1. Each process is built for sequential execution 

2. Data is communicated between processes via channels. 
No shared state! 

3. Scale by adding more of the same



Go’s concurrency toolset
• go routines 

• channels 

• select 

• sync package



Channels
• Think of a bucket chain 

• 3 components: sender, buffer, receiver 

• The buffer is optional



zZzzZz

zZz zZz



Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	
a	:=	<-	unbuffered	



zZz

Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	blocks	
a	:=	<-	unbuffered



Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	blocks	
a	:=	<-	unbuffered	

//	2)	
unbuffered	<-	1	



Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	blocks	
a	:=	<-	unbuffered	

//	2)	blocks	
unbuffered	<-	1

zZz



Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	blocks	
a	:=	<-	unbuffered	

//	2)	blocks	
unbuffered	<-	1	

//	3)	
go	func()	{	<-unbuffered	}()	
unbuffered	<-	1



Blocking channels
unbuffered	:=	make(chan	int)	

//	1)	blocks	
a	:=	<-	unbuffered	

//	2)	blocks	
unbuffered	<-	1	

//	3)	synchronises	
go	func()	{	<-unbuffered	}()	
unbuffered	<-	1



buffered	:=	make(chan	int,	1)	

//	4)	
a	:=	<-	buffered	

Blocking channels



buffered	:=	make(chan	int,	1)	

//	4)	still	blocks	
a	:=	<-	buffered

Blocking channels

zZz



Blocking channels
buffered	:=	make(chan	int,	1)	

//	4)	still	blocks	
a	:=	<-	buffered	

//	5)	
buffered	<-	1



Blocking channels
buffered	:=	make(chan	int,	1)	

//	4)	still	blocks	
a	:=	<-	buffered	

//	5)	fine	
buffered	<-	1



Blocking channels
buffered	:=	make(chan	int,	1)	

//	4)	still	blocks	
a	:=	<-	buffered	

//	5)	fine	
buffered	<-	1	

//	6)	
buffered	<-	2



Blocking channels
buffered	:=	make(chan	int,	1)	

//	4)	still	blocks	
a	:=	<-	buffered	

//	5)	fine	
buffered	<-	1	

//	6)	blocks	(buffer	full)	
buffered	<-	2 zZz



Blocking breaks concurrency
• Remember? 

• no deadlocks 

• more workers = faster execution 

• Blocking can lead to deadlocks 

• Blocking can prevent scaling



Closing channels
• Close sends a special „closed“ message 

• The receiver will at some point see „closed“. Yay! nothing to do. 

• If you try to send more: panic!

closed
closed



Closing channels
c	:=	make(chan	int)	

close(c)	

fmt.Println(<-c)	//	receive	and	print	

//	What	is	printed?



Closing channels
c	:=	make(chan	int)	

close(c)	

fmt.Println(<-c)	//	receive	and	print	

//	What	is	printed? 

//			0,	false



Closing channels
c	:=	make(chan	int)	

close(c)	

fmt.Println(<-c)	//	receive	and	print	

//	What	is	printed? 

//			0,	false 

//	-	a	receive	always	returns	two	values 
//	-	0	as	it	is	the	zero	value	of	int	
//	-	false	because	„no	more	data“	or	„returned	value	is	not	valid“



Select
• Like a switch statement on channel operations 

• The order of cases doesn’t matter at all 

• There is a default case, too 

• The first non-blocking case is chosen (send and/or receive)



Making channels non-blocking
func	TryReceive(c	<-chan	int)	(data	int,	more,	ok	bool)	{ 
				select	{	
				case	data,	more	=	<-c:	
								return	data,	more,	true 

				default:																					//	processed	when	c	is	blocking	
								return	0,	true,	false	
				}	
}



func	TryReceiveWithTimeout(c	<-chan	int,	duration	time.Duration)	(data	int,	more,	ok	bool)	{ 
				select	{	
				case	data,	more	=	<-c:	
								return	data,	more,	true 

				case	<-time.After(duration):	//	time.After()	returns	a	channel	
								return	0,	true,	false	
				}	
}

Making channels non-blocking



Shape your data flow
• Channels are streams of data 

• Dealing with multiple streams is the true power of select

Fan-out Funnel Turnout



Fan-out
func	Fanout(In	<-chan	int,	OutA,	OutB	chan	int)	{	
 
				for	data	:=	range	In	{	//	Receive	until	closed	

								select	{											//	Send	to	first	non-blocking	channel	
								case	OutA	<-	data:	
								case	OutB	<-	data:	
								}	

				}	
}



Turnout
func	Turnout(InA,	InB	<-chan	int,	OutA,	OutB	chan	int)	{ 
				//	variable	declaration	left	out	for	readability  
				for	{	
								select	{																		//	Receive	from	first	non-blocking	
								case	data,	more	=	<-InA:	
								case	data,	more	=	<-InB:	
								}	
								if	!more	{	
												//	...?	
												return	
								}	
								select	{																		//	Send	to	first	non-blocking	
								case	OutA	<-	data:	
								case	OutB	<-	data:	
								}	
				}	
}



Quit channel
func	Turnout(Quit	<-chan	int,	InA,	InB,	OutA,	OutB	chan	int)	{	
				//	variable	declaration	left	out	for	readability  
				for	{	
								select	{																							
								case	data	=	<-InA:	
								case	data	=	<-InB: 

								case	<-Quit:																//	remember:	close	generates	a	message	
												close(InA)														//	Actually	this	is	an	anti-pattern	…	
												close(InB)														//	…	but	you	can	argue	that	quit	acts	as	a	delegate 

												Fanout(InA,	OutA,	OutB)	//	Flush	the	remaining	data	
												Fanout(InB,	OutA,	OutB)	
												return	
								} 
 
								//	...



Where channels fail
• You can create deadlocks with channels 

• Channels pass around copies, which can impact performance 

• Passing pointers to channels can create race conditions 

• What about „naturally shared“ structures like caches or registries?



Mutexes are not an optimal solution
• Mutexes are like toilets. 

The longer you occupy them, the longer the queue gets 

• Read/write mutexes can only reduce the problem 

• Using multiple mutexes will cause deadlocks sooner or later 

• All-in-all not the solution we’re looking for



Three shades of code
• Blocking = Your program may get locked up (for undefined time) 

• Lock free = At least one part of your program is always making progress 

• Wait free = All parts of your program are always making progress



Atomic operations
• sync.atomic package 

• Store, Load, Add, Swap and CompareAndSwap 

• Mapped to thread-safe CPU instructions 

• These instructions only work on integer types 

• Only about 10 - 60x slower than their non-atomic counterparts



Spinning CAS
• You need a state variable and a „free“ constant 

• Use CAS (CompareAndSwap) in a loop: 

• If state is not free: try again until it is 

• If state is free: set it to something else 

• If you managed to change the state, you „own“ it



Spinning CAS
type	Spinlock	struct	{	
				state	*int32	
} 
 
const	free	=	int32(0)	

func	(l	*Spinlock)	Lock()	{ 
				for	!atomic.CompareAndSwapInt32(l.state,	free,	42)	{	//	42	or	any	other	value	but	0	
								runtime.Gosched()																																//	Poke	the	scheduler	
				}	
} 
 
func	(l	*Spinlock)	Unlock()	{	
				atomic.StoreInt32(l.state,	free)	//	Once	atomic,	always	atomic!	
}



Ticket storage
• We need an indexed data structure, a ticket and a done variable 

• A function draws a new ticket by adding 1 to the ticket 

• Every ticket number is unique as we never decrement 

• Treat the ticket as an index to store your data 

• Increase done to extend the „ready to read“ range



Ticket storage
type	TicketStore	struct	{	
				ticket	*uint64 
				done			*uint64 
				slots		[]string	//	for	simplicity:	imagine	this	to	be	infinite	
} 

func	(ts	*TicketStore)	Put(s	string)	{	
			t	:=	atomic.AddUint64(ts.ticket,	1)	-1														//	draw	a	ticket	
			slots[t]	=	s																																								//	store	your	data	
			for	!atomic.CompareAndSwapUint64(ts.done,	t,	t+1)	{	//	increase	done	
							runtime.Gosched()	
			}	
}	

func	(ts	*TicketStore)	GetDone()	[]string	{	
				return	ts.slots[:atomic.LoadUint64(ts.done)+1]					//	read	up	to	done	
} 



Ticket storage
type	TicketStore	struct	{	
				ticket	*uint64 
				done			*uint64 
				slots		[]string	//	for	simplicity:	imagine	this	to	be	infinite	
} 

func	(ts	*TicketStore)	Put(s	string)	{	
			t	:=	atomic.AddUint64(ts.ticket,	1)	-1														//	draw	a	ticket	
			slots[t]	=	s																																								//	store	your	data	
			for	!atomic.CompareAndSwapUint64(ts.done,	t,	t+1)	{	//	increase	done	
							runtime.Gosched()	
			}	
}	

func	(ts	*TicketStore)	GetDone()	[]string	{	
				return	ts.slots[:atomic.LoadUint64(ts.done)+1]					//	read	up	to	done	
} 



Debugging non-blocking code
• I call it „the instruction pointer game“ 

• The rules: 

• Pull up two windows (= two go routines) with the same code 

• You have one instruction pointer that iterates through your code 

• You may switch windows at any instruction 

• Watch your variables for race conditions



Debugging
func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 



func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

Debugging

ticket: 

1



func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

Debugging

ticket: 

1
ticket: 

2



func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

Debugging

ticket: 

1
ticket: 

2



func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

Debugging

ticket: 

1
ticket: 

2
done: 

1



func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

func	(ts	*TicketStore)	Put(s	string)	{ 

			ticket	:=	atomic.AddUint64(ts.next,	1)	-1	
			 
			slots[ticket]	=	s 
 
			atomic.AddUint64(ts.done,	1) 

} 

Debugging

ticket: 

1
ticket: 

2
done: 

1



Guidelines for non-blocking code
• Don’t switch between atomic and non-atomic functions 

• Target and exploit situations which enforce uniqueness 

• Avoid changing two things at a time 

• Sometimes you can exploit bit operations 

• Sometimes intelligent ordering can do the trick 

• Sometimes it’s just not possible at all



Concurrency in practice
• Avoid blocking, avoid race conditions 

• Use channels to avoid shared state. 
Use select to manage channels. 

• Where channels don’t work: 

• Try to use tools from the sync package first 

• In simple cases or when really needed: try lockless code



Thank you 
for listening!
arne.claus@trivago.com  
@arnecls

slides


